MONEL K500 (UNS N05500) (2024)

Ni 63.0 Cu 29.5 Al 2.7, Ti 0.6 C 0.18 Fe 2.0 Mn 1.5 Si 0.50 S 0.010

High Performance Alloys stocks and produces MONEL K500 in this grade in the following forms: Bar, square bar, fasteners. Request quote on this grade.

Overview

MONEL K500 is a age-hardenable Nickel-Copper alloy which combines the corrosion resistance of Alloy 400 with high strength corrosion fatigue and erosion resistance.

MONEL K500 is a nickel-copper alloy, precipitation hardenable through additions of aluminum and titanium. MONEL K500 retains the excellent corrosion resistant characteristics of 400 and has enhanced strength and hardness after precipitation hardening when compared with 400. Alloy K500 has approximately three (3) times the yield strength and double the tensile strength when compared with 400. MONEL K500 can be further strengthened by cold working before the precipitation hardening.

Characteristics

  • Excellent mechanical properties from sub-zero temperatures up to about 480C.
  • Corrosion resistance in an extensive range of marine and chemical environments. From pure water to non-oxidising mineral acids, salts and alkalis.

Applications

  • Propeller and pump shafts.
  • Pumps and valves used in the manufacture of perchlorethylene, chlorinated plastics.

Typical application for MONEL K500 which takes advantage of high strength and corrosion resistance are pump shafts, impellers, propeller shafts, valve components for ships and offshore drilling towers, bolting, oil well drill collars and instrumentation components for oil and gas production. It is particularly well suited for centrifugal pumps in the marine industry because of its high strength and low corrosion rates in high-velocity seawater.

MONEL K500 is non-magnetic. MONEL K500 should be annealed when welded and the weldment then stress relieved before aging.

High Performance Alloys, Inc. stocks Alloy K500 in a range of sizes including 3/8"-2-1/2" diameter cold drawn, annealed and aged, and 2-3/4"-10" diameter hot finished and aged. Material can be supplied in random lengths, cut to order or machined to your specifications. Machining includes drilling, turning, tapping, threading, CNC shapes, flanges and more.

Chemistry

Chemical Requirements

Ni

Mn

Si

Fe

Al

S

C

Max

1.50

0.50

2.00

3.15

0.010

0.18

Min

63.00

2.30


Tensile Data

Mechanical Property Requirements

Ultimate Tensile

Yield Strength (0.2% OS)

Elong.

Hardness

Rockwell C, min.

Hardness Brinell 3000 kg, min.

Cold Worked/SR Over 1(25.4) to 3

Min

140 KSi

100 KSi

17.0

29

280

Max

Min

965 MPa

690 MPa

Max

Hot Worked/ Aged Hardened

Min

140 KSi

100 KSi

20.0

27

265

Max

Min

965 MPa

690 MPa

Max


Specifications

Form

Standard

Metal Type

UNS N05500

Bar

ASTM B865 QQ-N-286

Wire

AMS4676

Sheet

ASTM B865 QQ-N-286

Plate

ASTM B865 QQ-N-286

Fitting

Forging

QQ-N-286 Din 17754

Weld Wire

FM 60 ERNiCu-7

Weld Electrode

FM 190 ENiCu-7 Din 17753

Din

2.4375

Machining

Nickel & cobalt base corrosion, temperature and wear-resistant alloys, such as MONEL K500, are classified as moderate to difficult when machining, however, it should be emphasized that these alloys can be machined using conventional production methods at satisfactory rates. During machining these alloys work harden rapidly, generate high heat during cutting, weld to the cutting tool surface and offer high resistance to metal removal because of their high shear strengths. The following are key points which should be considered during machining operations:

CAPACITY - Machine should be rigid and overpowered as much as possible.
RIGIDITY - Work piece and tool should be held rigid. Minimize tool overhang.
TOOL SHARPNESS - Make sure tools are sharp at all times. Change to sharpened tools at regular intervals rather than out of necessity. A 0.015 inch wear land is considered a dull tool.
TOOLS - Use positive rake angle tools for most machining operations. Negative rake angle tools can be considered for intermittent cuts and heavy stock removal. Carbide-tipped tools are suggested for most applications. High speed tools can be used, with lower production rates, and are often recommended for intermittent cuts.
POSITIVE CUTS - Use heavy, constant, feeds to maintain positive cutting action. If feed slows and the tool dwells in the cut, work hardening occurs, tool life deteriorates and close tolerances are impossible.
LUBRICATION - lubricants are desirable, soluble oils are recommended especially when using carbide tooling. Detailed machining parameters are presented Tables 16 and17. General plasma cutting recommendations are presented in Table 18.

Table 16
RECOMMENDED TOOL TYPES AND MACHINING CONDITIONS
Operations Carbide Tools
Roughing, with severe interruption Turning or Facing C-2 and C-3 grade: Negative rake square insert, 45 degree SCEA1, 1/32 in. nose radius. Tool holder: 5 degree neg. back rake, 5 degree neg. side rake. Speed: 30-50 sfm, 0.004-0.008 in. feed, 0.150 in depth of cut. Dry2, oil3, or water-base coolant4.
Normal roughing Turning or Facing C-2 or C-3 grade: Negative rate square insert, 45 degree SCEA, 1/32 in nose radius. Tool holder: 5 degree neg. back rake, 5 degree neg. side rake. Speed: 90 sfm depending on rigidity of set up, 0.010 in. feed, 0.150 in. depth of cut. Dry, oil, or water-base coolant.
Finishing Turning or Facing C-2 or C-3 grade: Positive rake square insert, if possible, 45 degree SCEA, 1/32 in. nose radius. Tool holder: 5 degree pos. back rake, 5 degree pos. side rake. Speed: 95-110 sfm, 0.005-0.007 in. feed, 0.040 in. depth of cut. Dry or water-base coolant.
Rough Boring C-2 or C-3 grade: If insert type boring bar, use standard positive rake tools with largest possible SCEA and 1/16 in. nose radius. If brazed tool bar, grind 0 degree back rake, 10 degree pos. side rake, 1/32 in. nose radius and largest possible SCEA. Speed: 70 sfm depending on the rigidity of setup, 0.005-0.008 in. feed, 1/8 in. depth of cut. Dry, oil or water-base coolant.
Finish Boring C-2 or C-3 grade: Use standard positive rake tools on insert type bars. Grind brazed tools as for finish turning and facing except back rake may be best at 0 degrees. Speed: 95-110 sfm, 0.002-0.004 in feed. Water-base coolant.
Notes:
1 SCEA - Side cutting edge angle or lead angle of the tool.

2 At any point where dry cutting is recommended, an air jet directed on the tool may provide substantial tool life increases. A water-base coolant mist may also be effective.

3 Oil coolant should be premium quality, sulfochlorinated oil with extreme pressure additives. A viscosity at 100 degrees F from 50 to 125 SSU.

4 Water-base coolant should be premium quality, sulfochlorinated water soluble oil or chemical emulsion with extreme pressure additives. Dilute with water to make 15:1 mix. Water-base coolant may cause chipping and rapid failure of carbide tools in interrupted cuts.

Table 17
RECOMMENDED TOOL TYPES AND MACHINING CONDITIONS
Operations Carbide Tools
Facing Milling Carbide not generally successful, C- grade may work. Use positive axial and radial rake, 45 degree corner angle, 10 degree relief angle. Speed: 50-60 sfm. Feed: 0.005-0.008 in. Oil or waterbase coolants will reduce thermal shock damage of carbide cutter teeth.
End Milling Not recommended, but C-2 grades may be successful on good setups. Use positive rake. Speed: 50-60 sfm. Feed: Same as high speed steel. Oil or water-base coolants will reduce thermal shock damage.
Drilling C-2 grade not recommended, but tipped drills may be successful on rigid setup if no great depth. The web must thinned to reduce thrust. Use 135 degree included angle on point. Gun drill can be used. Speed: 50 sfm. Oil or water-base coolant. Coolant-feed carbide tipped drills may be economical in some setups.
Reaming C-2 or C-3 grade: Tipped reamers recommended, solid carbide reamers require vary good setup. Tool geometry same as high speed steel. Speed: 50 sfm. Feed: Same as high speed steel.
Tapping Not recommended; machine threads, or roll-form them.
Electrical Discharge Machining The alloys can be easily cut using any conventional electrical discharge machining system (EDM) or wire (EDM).
Notes:
5 M-40 series High Speed Steels include M-41 , M-42, M-43, M-44, M-45 and M-46 at the time of writing. Others may be added and should be equally suitable.

6 Oil coolant should be a premium quality, sulfochlorinated oil with extreme pressure additives. A viscosity at 100 degree F from 50 to 125 SSU.

7 Water-base coolant should be premium quality, sulfochlorinated water soluble oil or chemical emulsion with extreme pressure additives. Dilute with water to make 15:1 mix.

Table 18
Plasma Arc Cutting
Our alloys can be cut using any conventional plasma arc cutting system. The best arc quality is achieved using a mixture of argon and hydrogen gases. Nitrogen gas can be substituted for hydrogen gases, but the cut quality will deteriorate slightly. Shop air or any oxygen bearing gases should be avoided when plasma cutting these alloys.

MONEL® is a registered trademark of the INCO family of companies.

MONEL K500 (UNS N05500) (2024)

FAQs

What is Monel K500 equivalent to? ›

The corrosion resistance of Monel alloy K-500 is subtantially equivalent to that of alloy 400 except that, when in the age-hardened condition, alloy K-500 has a greater tendency toward stress-corrosion cracking in some environments.

What is the uns number for monel? ›

MONEL® nickel-copper alloy 400 (UNS N04400/ W.Nr. 2.4360 and 2.4361) is a solid-solution alloy that can be hardened only by cold working.

What is Monel K500 material standard? ›

MONEL K500 is a nickel-copper alloy, precipitation hardenable through additions of aluminum and titanium. MONEL K500 retains the excellent corrosion resistant characteristics of 400 and has enhanced strength and hardness after precipitation hardening when compared with 400.

What is the ASTM standard for Monel K500 round bar? ›

SpecificationsASTM B 865 / ASME SB 865 / AMS 4676 / QQ N 286, ASTM B865 UNS N05500 Monel K500
Billet Size1/2″ to 495mm Diameter
Channel Bar80 x 40mm to 150 x 75mm section; 5.0 to 6.0mm thickness
Hollow Bar32mm OD x 16mm ID to 250mm OD x 200mm ID)
Angle bar size3mm*20mm*20mm~12mm*100mm*100mm
17 more rows

What is the difference between Monel K500 and ss316? ›

Approximately 700 MPa is the remarkable tensile strength of Monel K500, which is more than the 550 MPa of stainless steel 316. This discrepancy highlights Monel's superior resistance to applied forces, making it a strong option for challenging structural situations.

What is the difference between Monel K500 and k400? ›

Monel K-500 Bars have approximately three times the yield strength and double the tensile strength when compared with alloy 400. Plus, it can be further strengthened by cold working prior to precipitation hardening.

Why is monel so expensive? ›

Monel metal, being a specialty alloy, is typically more expensive than common metals like steel or aluminum due to its complex manufacturing process and specialized applications. The production of Monel metal involves precise alloying of nickel and copper, which requires specialized equipment and expertise.

What does UNS mean in steel? ›

The Unified Numbering System for Metals and Alloys (UNS) is an alloy designation system widely accepted in North America. Each UNS number relates to a specific metal or alloy and defines its specific chemical composition, or in some cases a specific mechanical or physical property.

Is monel stronger than stainless steel? ›

What is Monel? Monel metal is commonly used in applications with highly corrosive conditions. This metal is typically much more expensive than stainless steel due to its strength and other monel steel properties.

What is the difference between Monel K500 and Inconel 718? ›

tensile strength: Monel K500 has a tensile strength of 700 MPa, while Inconel 718 has a tensile strength of 1040 MPa. This difference in tensile strength is due to the different chemical compositions of the two alloys. Monel K500 contains more nickel than Inconel 718, which makes it stronger.

How much is Monel K500? ›

Monel K500 Price Per Kg
Monel K500 PriceOriginPrice in USD (per kg)
Monel K500 Price in IndiaIndian$24
Monel K500 Price in JapanJapanese$27
Monel K500 Price in UK / EuropeEuropean$28
Monel K500 Price in USAUSA$30

What is the application of Monel K500? ›

Typical applications for MONEL alloy K-500 products are chains and cables, fasteners and springs for marine service; pump and valve components for chemical processing; doctor blades and scrapers for pulp processing in paper production; oil well drill collars and instruments, pump shafts and impellers, non-magnetic ...

Is Monel k500 magnetic? ›

This nickel alloy is spark resistant and non-magnetic to -200° F. However, it is possible to develop a magnetic layer on the surface of the material during processing.

What is the ASME Code for Monel? ›

ASTM B165 UNS N04400(Monel 400) seamless pipe, 323.9mm x 7mm.

What are the different grades of Monel steel? ›

  • Monel 400. Monel 400 shows high strength and excellent corrosion resistance in a range of acidic and alkaline environments and is especially suitable for reducing conditions. ...
  • Monel 401. This alloy is designed for use in specialized electric and electronic applications. ...
  • Monel 404. ...
  • Monel 405. ...
  • Monel 450. ...
  • Monel K-500. ...
  • Monel 502.

What material is similar to Monel? ›

Similar to monel, Inconel alloys deliver a good performance at low temperatures.

Is Monel stronger than stainless steel? ›

What is Monel? Monel metal is commonly used in applications with highly corrosive conditions. This metal is typically much more expensive than stainless steel due to its strength and other monel steel properties.

Is Monel the same as alloy 400? ›

Monel 400 (also known as alloy 400) is an attractive option for industries where corrosion resistance is of the highest priority. Monel 400 is resistant to both steam and seawater as well as highly caustic solutions such as sulfuric, hydrochloric, and hydrofluoric acids when they are deaerated.

References

Top Articles
Latest Posts
Article information

Author: Tyson Zemlak

Last Updated:

Views: 6031

Rating: 4.2 / 5 (43 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Tyson Zemlak

Birthday: 1992-03-17

Address: Apt. 662 96191 Quigley Dam, Kubview, MA 42013

Phone: +441678032891

Job: Community-Services Orchestrator

Hobby: Coffee roasting, Calligraphy, Metalworking, Fashion, Vehicle restoration, Shopping, Photography

Introduction: My name is Tyson Zemlak, I am a excited, light, sparkling, super, open, fair, magnificent person who loves writing and wants to share my knowledge and understanding with you.